Category Archives: Software

A Simple, Delay-Tolerant, Offline-Capable Mesh Network with Syncthing (+ optional NNCP)

A little while back, I spent a week in a remote area. It had no Internet and no cell phone coverage. Sometimes, I would drive in to town where there was a signal to get messages, upload photos, and so forth. I had to take several devices with me: my phone, my wife’s, maybe a laptop or a tablet too. It seemed there should have been a better way. And there is.

I’ll use this example to talk about a mesh network, but it could just as well apply to people wanting to communicate on a 12-hour flight that has no in-flight wifi, or spacecraft with an intermittent connection, or a person traveling.

Syncthing makes a wonderful solution for things like these. Here are some interesting things about Syncthing:

  • You can think of Syncthing as a serverless, peer-to-peer, open source alternative to Dropbox. Machines sync directly with each other without a server, though you can add a server if you want.
  • It can operate completely without Internet access or any central server, though if Internet access is available, it can readily be used.
  • Syncthing devices connected to the same LAN or Wifi will detect each other’s presence and automatically communicate.
  • Syncthing is capable of handling a constantly-changing topology. It can also, for instance, handle two disconnected clusters of nodes with one node that “travels” between them — perhaps just a phone.
  • Syncthing scales from everything from a phone to thousands of nodes.
  • Syncthing normally performs syncs in every direction, but can also do single-direction syncs
  • An individual Syncthing node can register its interest or disinterest in certain files or directories based on filename patterns

Syncthing works by having you define devices and folders. You can choose which devices to share folders with. A shared folder has an ID that is unique across Sycnthing. You can share a folder from device A to device B, and then device B can share it with device C, even if A and C don’t know about each other or have no way to communicate. More commonly, though, all the devices would know about each other and will opportunistically communicate the best way they can.

Syncthing uses something akin to a Bittorrent protocol. Say you’re syncing videos from your phone, and they’re going to 3 machines. It doesn’t mean that Syncthing has to send it three times from the phone. Syncthing will send each block, most likely, just once; the other nodes in the swarm will register the block availability from the first other node to get it and will exchange blocks with themselves.

Syncthing will typically look for devices on the local LAN. Failing that, it will use an introduction server to see if it can reach them directly using P2P. Failing that, perhaps due to restrictive firewalls or NAT, communication can be relayed through volunteer-run Syncthing servers on the Internet. All Syncthing communications are cryptographically encrypted and verified. You can also configure Syncthing arbitrarily; for instance, to run over ssh or Tor tunnels.

So, let’s look at how Syncthing might help with the example I laid out up front.

All the devices at the remote location could communicate with each other. The Android app is quite capable of syncing photos and videos using Syncthing, for instance. Then one device could be taken to the Internet location and it would transmit data on behalf of all the others – perhaps back to a computer at your home, or to a server somewhere. Perhaps a script running on the remote server would then move files out of the syncthing synced folder into permanent storage elsewhere, triggering a deletion to be sent to the phone to free up storage. When the phone gets back to the other devices, the deletion can be propagated to them to free up storage there too.

Or maybe you have a computer out in a shed or somewhere without Internet access that you go to periodically, and need to get files to it. Again, your phone could be a carrier.

Taking it a step further

If you envision a file as a packet, you could, conceivably, do something like tunnel TCP/IP over Syncthing, assuming generous-enough timeouts. It can truly handle communication.

But you don’t need TCP/IP for this. Consider some other things you could do:

  • Drop a script in a special directory that gets picked up by a remote server and run
  • Drop emails in a special directory that get transmitted and then deleted by a remote system when they’re seen
  • Drop files (eg, photos or videos) in a directory that a remote system will copy or move out of there
  • Drop messages (perhaps gpg-encrypted) — which could be text files — for someone to see and process.
  • Drop NNTP bundles for group communication

You can start to see how there are a lot of possibilities here that extend beyond just file synchronization, though they are built upon a file synchronization tool.

Enter NNCP

Let’s look at a tool that’s especially suited for this: NNCP, which I’ve been writing about a lot lately.

NNCP is designed to handle file exchange and remote execution with remote computers in an asynchronous, store-and-forward manner. NNCP packets are themselves encrypted and authenticated. NNCP traditionally is source-routed (that is, you configure it so that machine A reaches machine D by relaying through B and C), and the packets are onion-routed. NNCP packets can be exchanged by a TCP call, a tar-like stream, copying files to something like a USB stick and physically transporting it to the remote, etc.

This works really well and I’ve been using it myself. But it gets complicated if the network topology isn’t fixed; it is difficult to reroute packets due to the onion routing, for instance. There are various workarounds that could be used — but why not just use Syncthing as a transport in those cases?

nncp-xfer is the command that exchanges packets by writing them to, and reading them from, a directory. It is what you’d use to exchange packets on a USB stick. And what you’d use to exchange packets via Syncthing. It writes packets in a RECIPIENT/SENDER/PACKET directory structure, so it is perfectly fine to have multiple systems exchanging packets in a single Syncthing synced folder tree. This structure also allows leaf nodes to only carry the particular packets they’re interested in. The packets are all encrypted, so they can be freely synced wherever.

Since Syncthing opportunistically syncs a shared folder with any device the folder is shared with, a phone could very easily be the NNCP transport, even if it has no idea what NNCP is. It could carry NNCP packets back and forth between sites, or to the Internet, or whatever.

NNCP supports file transmission, file request, and remote execution, all subject to controls, of course. It is easy to integrate with Exim or Postfix to use as a mail transport, Git transport, and so forth. I use it for backups. It would be quite easy to have it send those backups (encrypted zfs send) via nncp-xfer to Syncthing instead of the usual method, and then if I’ve shared the Syncthing folder with my phone, all I need to do is bring the phone into Internet range and they get sent. nncp-xfer will normally remove the packets out of the xfer directory as it ingests them, so the space will only be consumed on the phone (and laptop) until we know the packets made it to their destination.

Pretty slick, eh?

Remote Directory Tree Comparison, Optionally Asynchronous and Airgapped

Note: this is another article in my series on asynchronous communication in Linux with UUCP and NNCP.

In the previous installment on store-and-forward backups, I mentioned how easy it is to do with ZFS, and some of the tools that can be used to do it without ZFS. A lot of those tools are a bit less robust, so we need some sort of store-and-forward mechanism to verify backups. To be sure, verifying backups is good with ANY scheme, and this could be used with ZFS backups also.

So let’s say you have a shiny new backup scheme in place, and you’d like to verify that it’s working correctly. To do that, you need to compare the source directory tree on machine A with the backed-up directory tree on machine B.

Assuming a conventional setup, here are some ways you might consider to do that:

  • Just copy everything from machine A to machine B and compare locally
  • Or copy everything from machine A to a USB drive, plug that into machine B, and compare locally
  • Use rsync in dry-run mode and see if it complains about anything

The first two options are not particularly practical for large datasets, though I note that the second is compatible with airgapping. Using rsync requires both systems to be online at the same time to perform the comparison.

What would be really nice here is a tool that would write out lots of information about the files on a system: their names, sizes, last modified dates, maybe even sha256sum and other data. This file would be far smaller than the directory tree itself, would compress nicely, and could be easily shipped to an airgapped system via NNCP, UUCP, a USB drive, or something similar.

Tool choices

It turns out there are already quite a few tools in Debian (and other Free operating systems) to do this, and half of them are named mtree (though, of course, not all mtrees are compatible with each other.) We’ll look at some of the options here.

I’ve made a simple test directory for illustration purposes with these commands:

mkdir test
cd test
echo hi > hi
ln -s hi there
ln hi foo
touch empty
mkdir emptydir
mkdir somethingdir
cd somethingdir
ln -s ../there

I then also used touch to set all files to a consistent timestamp for illustration purposes.

Tool option: getfacl (Debian package: acl)

This comes with the acl package, but can be used with other than ACL purposes. Unfortunately, it doesn’t come with a tool to directly compare its output with a filesystem (setfacl, for instance, can apply the permissions listed but won’t compare.) It ignores symlinks and doesn’t show sizes or dates, so is ineffective for our purposes.

Example output:

$ getfacl --numeric -R test
...
# file: test/hi
# owner: 1000
# group: 1000
user::rw-
group::r--
other::r--
...

Tool option: fmtree, the FreeBSD mtree (Debian package: freebsd-buildutils)

fmtree can prepare a “specification” based on a directory tree, and compare a directory tree to that specification. The comparison also is aware of files that exist in a directory tree but not in the specification. The specification format is a bit on the odd side, but works well enough with fmtree. Here’s a sample output with defaults:

$ fmtree -c -p test
...
# .
/set type=file uid=1000 gid=1000 mode=0644 nlink=1
.               type=dir mode=0755 nlink=4 time=1610421833.000000000
    empty       size=0 time=1610421833.000000000
    foo         nlink=2 size=3 time=1610421833.000000000
    hi          nlink=2 size=3 time=1610421833.000000000
    there       type=link mode=0777 time=1610421833.000000000 link=hi

... skipping ...

# ./somethingdir
/set type=file uid=1000 gid=1000 mode=0777 nlink=1
somethingdir    type=dir mode=0755 nlink=2 time=1610421833.000000000
    there       type=link time=1610421833.000000000 link=../there
# ./somethingdir
..

..

You might be wondering here what it does about special characters, and the answer is that it has octal escapes, so it is 8-bit clean.

To compare, you can save the output of fmtree to a file, then run like this:

cd test
fmtree < ../test.fmtree

If there is no output, then the trees are identical. Change something and you get a line of of output explaining each difference. You can also use fmtree -U to change things like modification dates to match the specification.

fmtree also supports quite a few optional keywords you can add with -K. They include things like file flags, user/group names, various tipes of hashes, and so forth. I'll note that none of the options can let you determine which files are hardlinked together.

Here's an excerpt with -K sha256digest added:

    empty       size=0 time=1610421833.000000000 \
                sha256digest=e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855
    foo         nlink=2 size=3 time=1610421833.000000000 \
                sha256digest=98ea6e4f216f2fb4b69fff9b3a44842c38686ca685f3f55dc48c5d3fb1107be4

If you include a sha256digest in the spec, then when you verify it with fmtree, the verification will also include the sha256digest. Obviously fmtree -U can't correct a mismatch there, but of course it will detect and report it.

Tool option: mtree, the NetBSD mtree (Debian package: mtree-netbsd)

mtree produces (by default) output very similar to fmtree. With minor differences (such as the name of the sha256digest in the output), the discussion above about fmtree also applies to mtree.

There are some differences, and the most notable is that mtree adds a -C option which reads a spec and converts it to a "format that's easier to parse with various tools." Here's an example:

$ mtree -c -K sha256digest -p test | mtree -C
. type=dir uid=1000 gid=1000 mode=0755 nlink=4 time=1610421833.0 flags=none 
./empty type=file uid=1000 gid=1000 mode=0644 nlink=1 size=0 time=1610421833.0 flags=none 
./foo type=file uid=1000 gid=1000 mode=0644 nlink=2 size=3 time=1610421833.0 flags=none 
./hi type=file uid=1000 gid=1000 mode=0644 nlink=2 size=3 time=1610421833.0 flags=none 
./there type=link uid=1000 gid=1000 mode=0777 nlink=1 link=hi time=1610421833.0 flags=none 
./emptydir type=dir uid=1000 gid=1000 mode=0755 nlink=2 time=1610421833.0 flags=none 
./somethingdir type=dir uid=1000 gid=1000 mode=0755 nlink=2 time=1610421833.0 flags=none 
./somethingdir/there type=link uid=1000 gid=1000 mode=0777 nlink=1 link=../there time=1610421833.0 flags=none 

Most definitely an improvement in both space and convenience, while still retaining the relevant information. Note that if you want the sha256digest in the formatted output, you need to pass the -K to both mtree invocations. I could have done that here, but it is easier to read without it.

mtree can verify a specification in either format. Given what I'm about to show you about bsdtar, this should illustrate why I bothered to package mtree-netbsd for Debian.

Unlike fmtree, the mtree -U command will not adjust modification times based on the spec, but it will report on differences.

Tool option: bsdtar (Debian package: libarchive-tools)

bsdtar is a fascinating program that can work with many formats other than just tar files. Among the formats it supports is is the NetBSD mtree "pleasant" format (mtree -C compatible).

bsdtar can also convert between the formats it supports. So, put this together: bsdtar can convert a tar file to an mtree specification without extracting the tar file. bsdtar can also use an mtree specification to override the permissions on files going into tar -c, so it is a way to prepare a tar file with things owned by root without resorting to tools like fakeroot.

Let's look at how this can work:

$ cd test
$ bsdtar --numeric -cf - --format=mtree .
#mtree
. time=1610472086.318593729 mode=755 gid=1000 uid=1000 type=dir
./empty time=1610421833.0 mode=644 gid=1000 uid=1000 type=file size=0
./foo nlink=2 time=1610421833.0 mode=644 gid=1000 uid=1000 type=file size=3
./hi nlink=2 time=1610421833.0 mode=644 gid=1000 uid=1000 type=file size=3
./ormat\075mtree time=1610472086.318593729 mode=644 gid=1000 uid=1000 type=file size=5632
./there time=1610421833.0 mode=777 gid=1000 uid=1000 type=link link=hi
./emptydir time=1610421833.0 mode=755 gid=1000 uid=1000 type=dir
./somethingdir time=1610421833.0 mode=755 gid=1000 uid=1000 type=dir
./somethingdir/there time=1610421833.0 mode=777 gid=1000 uid=1000 type=link link=../there

You can use mtree -U to verify that as before. With the --options mtree: set, you can also add hashes and similar to the bsdtar output. Since bsdtar can use input from tar, pax, cpio, zip, iso9660, 7z, etc., this capability can be used to create verification of the files inside quite a few different formats. You can convert with bsdtar -cf output.mtree --format=mtree @input.tar. There are some foibles with directly using these converted files with mtree -U, but usually minor changes will get it there.

Side mention: stat(1) (Debian package: coreutils)

This tool isn't included because it won't operate recursively, but is a tool in the similar toolbox.

Putting It Together

I will still be developing a complete non-ZFS backup system for NNCP (or UUCP) in a future post. But in the meantime, here are some ideas you can reflect on:

  • Let's say your backup scheme involves sending a full backup every night. On the source system, you could pipe the generated tar file through something like tee >(bsdtar -cf bcakup.mtree @-) to generate an mtree file in-band while generating the tar file. This mtree file could be shipped over for verification.
  • Perhaps your backup scheme involves sending incremental backup data via rdup or even ZFS, but you would like to periodically verify that everything is good -- that an incremental didn't miss something. Something like mtree -K sha256 -c -x -p / | mtree -C -K sha256 would let you accomplish that.

I will further develop at least one of these ideas in a future post.

Bonus: cross-tool comparisons

In my mtree-netbsd packaging, I added tests like this to compare between tools:

fmtree -c -K $(MTREE_KEYWORDS) | mtree
mtree -c -K $(MTREE_KEYWORDS) | sed -e 's/\(md5\|sha1\|sha256\|sha384\|sha512\)=/\1digest=/' -e 's/rmd160=/ripemd160digest=/' | fmtree
bsdtar -cf - --options 'mtree:uname,gname,md5,sha1,sha256,sha384,sha512,device,flags,gid,link,mode,nlink,size,time,uid,type,uname' --format mtree . | mtree

More Topics on Store-And-Forward (Possibly Airgapped) ZFS and Non-ZFS Backups with NNCP

Note: this is another article in my series on asynchronous communication in Linux with UUCP and NNCP.

In my previous post, I introduced a way to use ZFS backups over NNCP. In this post, I’ll expand on that and also explore non-ZFS backups.

Use of nncp-file instead of nncp-exec

The previous example used nncp-exec (like UUCP’s uux), which lets you pipe stdin in, then queues up a request to run a given command with that input on a remote. I discussed that NNCP doesn’t guarantee order of execution, but that for the ZFS use case, that was fine since zfs receive would just fail (causing NNCP to try again later).

At present, nncp-exec stores the data piped to it in RAM before generating the outbound packet (the author plans to fix this shortly) [Update: This is now fixed; use -use-tmp with nncp-exec!). That made it unusable for some of my backups, so I set it up another way: with nncp-file, the tool to transfer files to a remote machine. A cron job then picks them up and processes them.

On the machine being backed up, we have to find a way to encode the dataset to be received. I chose to do that as part of the filename, so the updated simplesnap-queue could look like this:

#!/bin/bash

set -e
set -o pipefail

DEST="`echo $1 | sed 's,^tank/simplesnap/,,'`"
FILE="bakfsfmt2-`date "+%s.%N".$$`_`echo "$DEST" | sed 's,/,@,g'`"

echo "Processing $DEST to $FILE" >&2
# stdin piped to this
zstd -8 - \
  | gpg --compress-algo none --cipher-algo AES256 -e -r 012345...  \
  | su nncp -c "/usr/local/nncp/bin/nncp-file -nice B -noprogress - 'backupsvr:$FILE'" >&2

echo "Queued $DEST to $FILE" >&2

I’ve added compression and encryption here as well; more on that below.

On the backup server, we would define a different incoming directory for each node in nncp.hjson. For instance:

host1: {
...
   incoming: "/var/local/nncp-bakcups-incoming/host1"
}

host2: {
...
   incoming: "/var/local/nncp-backups-incoming/host2"
}

I’ll present the scanning script in a bit.

Offsite Backup Rotation

Most of the time, you don’t want just a single drive to store the backups. You’d like to have a set. At minimum, one wouldn’t be plugged in so lightning wouldn’t ruin all your backups. But maybe you’d store a second drive at some other location you have access to (friend’s house, bank box, etc.)

There are several ways you could solve this:

  • If the remote machine is at a location with network access and you trust its physical security (remember that although it will store data encrypted at rest and will transport it encrypted, it will — in most cases — handle un-encrypted data during processing), you could of course send NNCP packets to it over the network at the same time you send them to your local backup system.
  • Alternatively, if the remote location doesn’t have network access or you want to keep it airgapped, you could transport the NNCP packets by USB drive to the remote end.
  • Or, if you don’t want to have any kind of processing capability remotely — probably a wise move — you could rotate the hard drives themselves, keeping one plugged in locally and unplugging the other to take it offsite.

The third option can be helped with NNCP, too. One way is to create separate NNCP installations for each of the drives that you store data on. Then, whenever one is plugged in, the appropriate NNCP config will be loaded and appropriate packets received and processed. The neighbor machine — the spooler — would just store up packets for the offsite drive until it comes back onsite (or, perhaps, your airgapped USB transport would do this). Then when it’s back onsite, all the queued up ZFS sends get replayed and the backups replicated.

Now, how might you handle this with NNCP?

The simple way would be to have each system generating backups send them to two destinations. For instance:

zstd -8 - | gpg --compress-algo none --cipher-algo AES256 -e -r 07D5794CD900FAF1D30B03AC3D13151E5039C9D5 \
  | tee >(su nncp -c "/usr/local/nncp/bin/nncp-file -nice B+5 -noprogress - 'backupdisk1:$FILE'") \
        >(su nncp -c "/usr/local/nncp/bin/nncp-file -nice B+5 -noprogress - 'backupdisk2:$FILE'") \
   > /dev/null

You could probably also more safely use pee(1) (from moreutils) to do this.

This has an unfortunate result of doubling the network traffic from every machine being backed up. So an alternative option would be to queue the packets to the spooling machine, and run a distribution script from it; something like this, in part:

INCOMINGDIR="/var/local/nncp-bakfs-incoming"
LOCKFILE="$INCOMINGDIR/.lock"
printf -v EVAL_SAFE_LOCKFILE '%q' "$LOCKFILE"
if dotlockfile -r 0 -l -p "${LOCKFILE}"; then
  logit "Lock obtained at ${LOCKFILE} with dotlockfile"
  trap 'ECODE=$?; dotlockfile -u '"${EVAL_SAFE_LOCKFILE}"'; exit $ECODE' EXIT INT TERM
else
  logit "Could not obtain lock at $LOCKFILE; $0 likely already running."
  exit 0
fi


logit "Scanning queue directory..."
cd "$INCOMINGDIR"
for HOST in *; do
   cd "$INCOMINGDIR/$HOST"
   for FILE in bakfsfmt2-*; do
           if [ -f "$FILE" ]; then
                   for BAKFS in backupdisk1 backupdisk2; do
                           runcommand nncp-file -nice B+5 -noprogress "$FILE" "$BAKFS:$HOST/$FILE"
                   done
                   runcommand rm "$FILE"
           else
                   logit "$HOST: Skipping $FILE since it doesn't exist"
           fi
   done

done
logit "Scan complete."

Security Considerations

You’ll notice that in my example above, the encryption happens as the root user, but nncp is called under su. This means that even if there is a vulnerability in NNCP, the data would still be protected by GPG. I’ll also note here that many sites run ssh as root unnecessarily; the same principles should apply there. (ssh has had vulnerabilities in the past as well). I could have used gpg’s built-in compression, but zstd is faster and better, so we can get good performance by using fast compression and piping that to an algorithm that can use hardware acceleration for encryption.

I strongly encourage considering transport, whether ssh or NNCP or UUCP, to be untrusted. Don’t run it as root if you can avoid it. In my example, the nncp user, which all NNCP commands are run as, has no access to the backup data at all. So even if NNCP were compromised, my backup data wouldn’t be. For even more security, I could also sign the backup stream with gpg and validate that on the receiving end.

I should note, however, that this conversation assumes that a network- or USB-facing ssh or NNCP is more likely to have an exploitable vulnerability than is gpg (which here is just processing a stream). This is probably a safe assumption in general. If you believe gpg is more likely to have an exploitable vulnerability than ssh or NNCP, then obviously you wouldn’t take this particular approach.

On the zfs side, the use of -F with zfs receive is avoided; this could lead to a compromised backed-up machine generating a malicious rollback on the destination. Backup zpools should be imported with -R or -N to ensure that a malicious mountpoint property couldn’t be used to cause an attack. I choose to use “zfs receive -u -o readonly=on” which is compatible with both unmounted backup datasets and zpools imported with -R (or both). To access the data in a backup dataset, you would normally clone it and access it there.

The processing script

So, put this all together and look at an example of a processing script that would run from cron as root and process the incoming ZFS data.

#!/bin/bash
set -e
set -o pipefail

# Log a message
logit () {
   logger -p info -t "`basename "$0"`[$$]" "$1"
}

# Log an error message
logerror () {
   logger -p err -t "`basename "$0"`[$$]" "$1"
}

# Log stdin with the given code.  Used normally to log stderr.
logstdin () {
   logger -p info -t "`basename "$0"`[$$/$1]"
}

# Run command, logging stderr and exit code
runcommand () {
   logit "Running $*"
   if "$@" 2> >(logstdin "$1") ; then
      logit "$1 exited successfully"
      return 0
   else
       RETVAL="$?"
       logerror "$1 exited with error $RETVAL"
       return "$RETVAL"
   fi
}

STORE=backups/simplesnap
INCOMINGDIR=/backups/nncp/incoming

if ! [ -d "$INCOMINGDIR" ]; then
        logerror "$INCOMINGDIR doesn't exist"
        exit 0
fi

LOCKFILE="/backups/nncp/.nncp-backups-zfs-scan.lock"
printf -v EVAL_SAFE_LOCKFILE '%q' "$LOCKFILE"
if dotlockfile -r 0 -l -p "${LOCKFILE}"; then
  logit "Lock obtained at ${LOCKFILE} with dotlockfile"
  trap 'ECODE=$?; dotlockfile -u '"${EVAL_SAFE_LOCKFILE}"'; exit $ECODE' EXIT INT TERM
else
  logit "Could not obtain lock at $LOCKFILE; $0 likely already running."
  exit 0
fi

EXITCODE=0


cd "$INCOMINGDIR"
logit "Scanning queue directory..."
for HOST in *; do
    HOSTPATH="$INCOMINGDIR/$HOST"
    # files like backupsfmt2-134.13134_dest
    for FILE in "$HOSTPATH"/backupsfmt2-[0-9]*_?*; do
        if [ ! -f "$FILE" ]; then
            logit "Skipping non-existent $FILE"
            continue
        fi

        # Now, $DEST will be HOST/DEST.  Strip off the @ also.
        DEST="`echo "$FILE" | sed -e 's/^.*backupsfmt2[^_]*_//' -e 's,@,/,g'`"

        if [ -z "$DEST" ]; then
            logerror "Malformed dest in $FILE"
            continue
        fi
        HOST2="`echo "$DEST" | sed 's,/.*,,g'`"
        if [ -z "$HOST2" ]; then
            logerror "Malformed DEST $DEST in $FILE"
            continue
        fi

        if [ ! "$HOST" = "$HOST2" ]; then
            logerror "$DIR: $HOST doesn't match $HOST2"
            continue
        fi

        logit "Processing $FILE to $STORE/$DEST"
            if runcommand gpg -q -d < "$FILE" | runcommand zstdcat | runcommand zfs receive -u -o readonly=on "$STORE/$DEST"; then
                logit "Successfully processed $FILE to $STORE/$DEST"
                runcommand rm "$FILE"
        else
                logerror "FAILED to process $FILE to $STORE/$DEST"
                EXITCODE=15
        fi

Applying These Ideas to Non-ZFS Backups

ZFS backups made our job easier in a lot of ways:

  • ZFS can calculate a diff based on an efficiently-stored previous local state (snapshot or bookmark), rather than a comparison to a remote state (rsync)
  • ZFS "incremental" sends, while less efficient than rsync, are reasonably efficient, sending only changed blocks
  • ZFS receive detects and enforces that the incremental source on the local machine must match the incremental source of the original stream, enforcing ordering
  • Datasets using ZFS encryption can be sent in their encrypted state
  • Incrementals can be done without a full scan of the filesystem

Some of these benefits you just won't get without ZFS (or something similar like btrfs), but let's see how we could apply these ideas to non-ZFS backups. I will explore the implementation of them in a future post.

When I say "non ZFS", I am being a bit vague as to whether the source, the destination, or both systems are running a non-ZFS filesystem. In general I'll assume that neither are ZFS.

The first and most obvious answer is to just tar up the whole system and send that every day. This is, of course, only suitable for small datasets on a fast network. These tarballs could be unpacked on the destination and stored more efficiently via any number of methods (hardlink trees, a block-level deduplicator like borg or rdedup, or even just simply compressed tarballs).

To make the network trip more efficient, something like rdiff or xdelta could be used. A signature file could be stored on the machine being backed up (generated via tee/pee at stream time), and the next run could simply send an rdiff delta over NNCP. This would be quite network-efficient, but still would require reading every byte of every file on every backup, and would also require quite a bit of temporary space on the receiving end (to apply the delta to the previous tarball and generate a new one).

Alternatively, a program that generates incremental backup files such as rdup could be used. These could be transmitted over NNCP to the backup server, and unpacked there. While perhaps less efficient on the network -- every file with at least one modified byte would be retransmitted in its entirety -- it avoids the need to read every byte of unmodified files or to have enormous temporary space. I should note here that GNU tar claims to have an incremental mode, but it has a potential data loss bug.

There are also some tools with algorithms that may apply well in this use care: syrep and fssync being the two most prominent examples, though rdedup (mentioned above) and the nascent asuran project may also be combinable with other tools to achieve this effect.

I should, of course, conclude this section by mentioning btrfs. Every time I've tried it, I've run into serious bugs, and its status page indicates that only some of them have been resolved. I would not consider using it for something as important as backups. However, if you are comfortable with it, it is likely to be able to run in more constrained environments than ZFS and could probably be processed in much the same way as zfs streams.

Airgapped / Asynchronous Backups with ZFS over NNCP

In my previous articles in the series on asynchronous communication with the modern NNCP tool, I talked about its use for asynchronous, potentially airgapped, backups. The first article, How & Why To Use Airgapped Backups laid out the foundations for this. Now let’s dig into the details.

Today’s post will cover ZFS, because it has a lot of features that make it very easy to support in this setup. Non-ZFS backups will be covered later.

The setup is actually about as simple as it is for SSH, but since people are less familiar with this kind of communication, I’m going to try to go into more detail here.

Assumptions

I am assuming a setup where:

  • The machines being backed up run ZFS
  • The disk(s) that hold the backups are also running ZFS
  • zfs send / receive is desired as an efficient way to transport the backups
  • The machine that holds the backups may have no network connection whatsoever
  • Backups will be sent encrypted over some sort of network to a spooling machine, which temporarily holds them until they are transported to the destination backup system and ingested there. This system will be unable to decrypt the data streams it temporarily stores.

Hardware

Let’s start with hardware for the machine to hold the backups. I initially considered a Raspberry Pi 4 with 8GB of RAM. That would probably have been a suitable machine, at least for smaller backup sets. However, none of the Raspberry Pi machines support hardware AES encryption acceleration, and my Pi4 benchmarks as about 60MB/s for AES encryption. I want my backups to be encrypted, and decided this would just be too slow for my purposes. Again, if you don’t need encrypted backups or don’t care that much about performance — may people probably fall into this category — you can have a fully-functional Raspberry Pi 4 system for under $100 that would make a fantastic backup server.

I wound up purchasing a Qotom-Q355G4 micro PC with a Core i5 for about $315. It has USB 3 ports and is designed as a rugged, long-lasting system. I have been using one of their older Celeron-based models as my router/firewall for a number of years now and it’s been quite reliable.

For backup storage, you can get a USB 3 external drive. My own preference is to get a USB 3 “toaster” (device that lets me plug in SATA drives) so that I have more control over the underlying medium and can save the expense and hassle of a bunch of power supplies. In a future post, I will discuss drive rotation so you always have an offline drive.

Then, there is the question of transport to the backup machine. A simple solution would be to have a heavily-firewalled backup system that has no incoming ports open but makes occasional outgoing connections to one specific NNCP daemon on the spooling machine. However, for airgapped operation, it would also be very simple to use nncp-xfer to transport the data across on a USB stick or some such. You could set up automounting for a specific USB stick – plug it in, all the spooled data is moved over, then plug it in to the backup system and it’s processed, and any outbound email traffic or whatever is copied to the USB stick at that point too. The NNCP page has some more commentary about this kind of setup.

Both are fairly easy to set up, and NNCP is designed to be transport-agnostic, so in this article I’m going to focus on how to integrate ZFS with NNCP.

Operating System

Of course, it should be no surprise that I set this up on Debian.

As an added step, I did all the configuration in Ansible stored in a local git repo. This adds a lot of work, but it means that it is trivial to periodically wipe and reinstall if any security issue is suspected. The git repo can be copied off to another system for storage and takes the system from freshly-installed to ready-to-use state.

Security

There is, of course, nothing preventing you from running NNCP as root. The zfs commands, obviously, need to be run as root. However, from a privilege separation standpoint, I have chosen to run everything relating to NNCP as a nncp user. NNCP already does encryption, but if you prefer to have zero knowledge of the data even to NNCP, it’s trivial to add gpg to the pipeline as well, and in fact I’ll be demonstrating that in a future post for other reasons.

Software

Besides NNCP, there needs to be a system that generates the zfs send streams. For this project, I looked at quite a few. Most were designed to inspect the list of snapshots on a remote end, compare it to a list on the local end, and calculate a difference from there. This, of course, won’t work for this situation.

I realized my own simplesnap project was very close to being able to do this. It already used an algorithm of using specially-named snapshots on the machine being backed up, so never needed any communication about what snapshots were present where. All it needed was a few more options to permit sending to a stream instead of zfs receive. I made those changes and they are available in simplesnap 2.0.0 or above. That version has also been uploaded to sid, and will work fine as-is on buster as well.

Preparing NNCP

I’m going to assume three hosts in this setup:

  • laptop is the machine being backed up. Of course, you may have quite a few of these.
  • spooler holds the backup data until the backup system picks it up
  • backupsvr holds the backups

The basic NNCP workflow documentation covers the basic steps. You’ll need to run nncp-cfgnew on each machine. This generates a basic configuration, along with public and private keys for that machine. You’ll copy the public key sets to the configurations of the other machines as usual. On the laptop, you’ll add a via line like this:

backupsvr: {
  id: ....
  exchpub: ...
  signpub: ...
  noisepub: ...
  via: ["spooler"]

This tells NNCP that data destined for backupsvr should always be sent via spooler first.

You can then arrange for the nncp-daemon to run on the spooler, and nncp-caller or nncp-call on the backupsvr. Or, alternatively, airgapped between the two with nncp-xfer.

Generating Backup Data

Now, on the laptop, install simplesnap (2.0.0 or above). Although you won’t be backing up to the local system, simplesnap still maintains a hostlock in ZFS. Prepate a dataset for it:

zfs create tank/simplesnap
zfs set org.complete.simplesnap:exclude=on tank/simplesnap

Then, create a script /usr/local/bin/runsimplesnap like this:

#!/bin/bash

set -e

simplesnap --store tank/simplesnap --setname backups --local --host `hostname` \
   --receivecmd /usr/local/bin/simplesnap-queue \
   --noreap

su nncp -c '/usr/local/nncp/bin/nncp-toss -noprogress -quiet'

if ip addr | grep -q 192.168.65.64; then
  su nncp -c '/usr/local/nncp/bin/nncp-call -noprogress -quiet -onlinedeadline 1 spooler'
fi

The call to simplesnap sets it up to send the data to simplesnap-queue, which we’ll create in a moment. The –receivmd, plus –noreap, sets it up to run without ZFS on the local system.

The call to nncp-toss will process any previously-received inbound NNCP packets, if there are any. Then, in this example, we do a very basic check to see if we’re on the LAN (checking 192.168.65.64), and if so, will establish a connection to the spooler to transmit the data. If course, you could also do this over the Internet, with tor, or whatever, but in my case, I don’t want to automatically do this in case I’m tethered to mobile. I figure if I want to send backups in that case, I can fire up nncp-call myself. You can also use nncp-caller to set up automated connections on other schedules; there are a lot of options.

Now, here’s what /usr/local/bin/simplesnap-queue looks like:

#!/bin/bash

set -e
set -o pipefail

DEST="`echo $1 | sed 's,^tank/simplesnap/,,'`"

echo "Processing $DEST" >&2
# stdin piped to this
su nncp -c "/usr/local/nncp/bin/nncp-exec -nice B -noprogress backupsvr zfsreceive '$DEST'" >&2
echo "Queued for $DEST" >&2

This is a pretty simple script. simplesnap will call it with a path based on the –store, with the hostname after; so, for instance, tank/simplesnap/laptop/root or some such. This script strips off the leading tank/simplesnap (which is a local fragment), leaving the host and dataset paths. Then it just pipes it to nncp-exec. -nice B classifies it as low-priority bulk data (so if you have some more important interactive data, it would be sent first), then passes it to whatever the backupsvr defines as zfsreceive.

Receiving ZFS backups

In the NNCP configuration on the recipient’s side, in the laptop section, we define what command it’s allowed to run as zfsreceive:

      exec: {
        zfsreceive: ["/usr/bin/sudo", "-H", "/usr/local/bin/nncp-zfs-receive"]
      }

We authorize the nncp user to run this under sudo in /etc/sudoers.d/local–nncp:

Defaults env_keep += "NNCP_SENDER"
nncp ALL=(root) NOPASSWD: /usr/local/bin/nncp-zfs-receive

The NNCP_SENDER is the public key ID of the sending node when nncp-toss processes the incoming data. We can use that for sanity checking later.

Now, here’s a basic nncp-zfs-receive script:

#!/bin/bash
set -e
set -o pipefail

STORE=backups/simplesnap
DEST="$1"

# now process stdin
runcommand zfs receive -o readonly=on -x mountpoint "$STORE/$DEST"

And there you have it — all the basics are in place.

Update 2020-12-30: An earlier version of this article had “zfs receive -F” instead of “zfs receive -o readonly=on -x mountpoint”. These changed arguments are more robust.
Update 2021-01-04: I am now recommending “zfs receive -u -o readonly=on”; see my successor article for more.

Enhancements

You could enhance the nncp-zfs-receive script to improve logging and error handling. For instance:

#!/bin/bash

set -e
set -o pipefail

STORE=backups/simplesnap
# $1 will be the host/dataset

DEST="$1"
HOST="`echo "$1" | sed 's,/.*,,g'`"
if [ -z "$HOST" ]; then
   echo "Malformed command line"
   exit 5
fi

# Log a message
logit () {
   logger -p info -t "`basename "$0"`[$$]" "$1"
}

# Log an error message
logerror () {
   logger -p err -t "`basename "$0"`[$$]" "$1"
}

# Log stdin with the given code.  Used normally to log stderr.
logstdin () {
   logger -p info -t "`basename "$0"`[$$/$1]"
}

# Run command, logging stderr and exit code
runcommand () {
   logit "Running $*"
   if "$@" 2> >(logstdin "$1") ; then
      logit "$1 exited successfully"
      return 0
   else
       RETVAL="$?"
       logerror "$1 exited with error $RETVAL"
       return "$RETVAL"
   fi
}
exiterror () {
   logerror "$1"
   echo "$1" 1>&2
   exit 10
}

# Sanity check

if [ "$HOST" = "laptop" ]; then
  if [ "$NNCP_SENDER" != "12345678" ]; then
    exiterror "Host $HOST doesn't match sender $NNCP_SENDER"
  fi
else
  exiterror "Unknown host $HOST"
fi

runcommand zfs receive -F "$STORE/$DEST"

Now you’ll capture the ZFS receive output in syslog in a friendly way, so you can look back later why things failed if they did.

Further notes on NNCP

nncp-toss will examine the exit code from an invocation. If it is nonzero, it will keep the command (and associated stdin) in the queue and retry it on the next invocation. NNCP does not guarantee order of execution, so it is possible in some cases that ZFS streams may be received in the wrong order. That is fine here; zfs receive will exit with an error, and nncp-toss will just run it again after the dependent snapshots have been received. For non-ZFS backups, a simple sequence number can handle this issue.

Asynchronous Email: Exim over NNCP (or UUCP)

Following up to yesterday’s article about how NNCP rehabilitates asynchronous communication with modern encryption and onion routing, here is the first of my posts showing how to put it into action.

Email is a natural fit for async; in fact, much of early email was carried by UUCP. It is useful for an airgapped machine to be able to send back messages; errors from cron, results of handling incoming data, disk space alerts, etc. (Of course, this would apply to a non-airgapped machine also).

The NNCP documentation already describes how to do this for Postfix. Here I will show how to do it for Exim.

A quick detour to UUCP land

When you encounter a system such as email that has instructions for doing something via UUCP, that should be an alert to you that “here is some very relevant information for doing this same thing via NNCP.” The syntax is different, but broadly, here’s a table of similar NNCP commands:

Purpose UUCP NNCP
Connect to remote system uucico -s, uupoll nncp-call, nncp-caller
Receive connection (pipe, daemon, etc) uucico (-l or similar) nncp-daemon
Request remote execution, stdin piped in uux nncp-exec
Copy file to remote machine uucp nncp-file
Copy file from remote machine uucp nncp-freq
Process received requests uuxqt nncp-toss
Move outbound requests to dir (for USB stick, airgap, etc) N/A nncp-xfer
Create streaming package of outbound requests N/A nncp-bundle

If you used UUCP back in the day, you surely remember bang paths. I will not be using those here. NNCP handles routing itself, rather than making the MTA be aware of the network topology, so this simplifies things considerably.

Sending from Exim to a smarthost

One common use for async email is from a satellite system: one that doesn’t receive mail, or have local mailboxes, but just needs to get email out to the Internet. This is a common situation even for conventionally-connected systems; in Exim speak, this is a “satellite system that routes mail via a smarthost.” That is, every outbound message goes to a specific target, which then is responsible for eventual delivery (over the Internet, LAN, whatever).

This is fairly simple in Exim.

We actually have two choices for how to do this: bsmtp or rmail mode. bsmtp (batch SMTP) is the more modern way, and is essentially a derivative of SMTP that explicitly can be queued asynchronously. Basically it’s a set of SMTP commands that can be saved in a file. The alternative is “rmail” (which is just an alias for sendmail these days), where the data is piped to rmail/sendmail with the recipients given on the command line. Both can work with Exim and NNCP, but because we’re doing shiny new things, we’ll use bsmtp.

These instructions are loosely based on the Using outgoing BSMTP with Exim HOWTO. Some of these may assume Debianness in the configuration, but should be easily enough extrapolated to other configs as well.

First, configure Exim to use satellite mode with minimal DNS lookups (assuming that you may not have working DNS anyhow).

Then, in the Exim primary router section for smarthost (router/200_exim4-config_primary in Debian split configurations), just change transport = remote_smtp_smarthost to transport = nncp.

Now, define the NNCP transport. If you are on Debian, you might name this transports/40_exim4-config_local_nncp:

nncp:
  debug_print = "T: nncp transport for $local_part@$domain"
  driver = pipe
  user = nncp
  batch_max = 100
  use_bsmtp
  command = /usr/local/nncp/bin/nncp-exec -noprogress -quiet hostname_goes_here rsmtp
.ifdef REMOTE_SMTP_HEADERS_REWRITE
  headers_rewrite = REMOTE_SMTP_HEADERS_REWRITE
.endif
.ifdef REMOTE_SMTP_RETURN_PATH
  return_path = REMOTE_SMTP_RETURN_PATH
.endif

This is pretty straightforward. We pipe to nncp-exec, run it as the nncp user. nncp-exec sends it to a target node and runs whatever that node has called rsmtp (the command to receive bsmtp data). When the target node processes the request, it will run the configured command and pipe the data in to it.

More complicated: Routing to various NNCP nodes

Perhaps you would like to be able to send mail directly to various NNCP nodes. There are a lot of ways to do that.

Fundamentally, you will need a setup similar to the UUCP example in Exim’s manualroute manual, which lets you define how to reach various hosts via UUCP/NNCP. Perhaps you have a star topology (every NNCP node exchanges email with a central hub). In the NNCP world, you have two choices of how you do this. You could, at the Exim level, make the central hub the smarthost for all the side nodes, and let it redistribute mail. That would work, but requires decrypting messages at the hub to let Exim process. The other alternative is to configure NNCP to just send to the destinations via the central hub; that takes advantage of onion routing and doesn’t require any Exim processing at the central hub at all.

Receiving mail from NNCP

On the receiving side, first you need to configure NNCP to authorize the execution of a mail program. In the section of your receiving host where you set the permissions for the client, include something like this:

      exec: {
        rsmtp: ["/usr/sbin/sendmail", "-bS"]
      }

The -bS option is what tells Exim to receive BSMTP on stdin.

Now, you need to tell Exim that nncp is a trusted user (able to set From headers arbitrarily). Assuming you are running NNCP as the nncp user, then add MAIN_TRUSTED_USERS = nncp to a file such as /etc/exim4/conf.d/main/01_exim4-config_local-nncp. That’s it!

Some hosts, of course, both send and receive mail via NNCP and will need configurations for both.

Rehabilitating Asynchronous Communication with NNCP: A Cross Between Tor, ssh, and UUCP

Have you ever been traveling, shot a ton of photos and videos, but were annoyed to find it was saturating the terrible wifi you had access to? Maybe you’d wish the upload to pause until you get somewhere else, but then pausing syncing on your Nextcloud/Syncthing/Dropbox would also pause other syncing you didn’t want to pause. Or you have trouble backing up your laptop when not at home, in a way that won’t accidentaly eat up your cell phone data.

There are ways to help with this: asynchronous transfer.

Here’s a lot of background. If you want to see how encrypted, onion-routed UUCP looks, skip ahead to the “NNCP” section!

There is an old saying: “When all you have is a hammer, every problem looks like a nail.” We have this wonderful tool called ssh available, and it is pervasive and well-understood, so we tend to use it. But we’ve missed out on some benefits of asynchronous processing that we actually used to have more frequently.

Of course, we are all used to some asynchronous services in our lives. Email is a popular example: most mail clients work offline and will transmit stored messages when the mail server becomes reachable. Mail servers themselves work that way, too. Many instant messaging platforms do as well.

Even some backup systems do. Bacula/Bareos, for instance, spools all backup data to disk on the system connected to the tape drive, and from there to the tape itself. They do this for several reasons, but primarily the fact that if tape drives are not fed with data at their design speed, it can cause physical damage to the tape or even the drive. It causes the drive to have to pause, and seek backwards to reposition for the next write. This creates excessive travel of the tape over the write heads, causing a condition known as “tape shine” where the tape is damaged prematurely.

Here are some problems people often run into when sending data across a network (or the Internet) synchronously:

  • One side of the communication is much faster than the other
  • Internet issues interrupting communications mid-stream
  • Slow Internet causing processes to take much longer than planned, resulting in unexpected results or locking issues
  • Physical damage due to performance issues

Of course, there are plenty of situations where synchronous communication is a must. For instance:

  • When the status of the transaction at the remote end must be known immediately
  • When there is insufficient space to spool a job’s data

I suspect that the reason we don’t do more asynchronous processing these days, despite it being strong in the Unix heritage, is the lack of modern tools to do it. Let’s explore some more.

Some of my use cases

I run ZFS on all my systems that support it: file server, laptops, workstations, etc. It is only natural to use ZFS send/receive to do backups, and I do. However, when I am traveling, my laptop never gets backed up, because the backups are pulled from the backup system. Sure, there are ways around that; a VPN, for instance. But then we have the situation where sometimes I do not want to send the backup even if I have a working Internet connection: perhaps I’m tethered to a mobile connection and it would be expensive to do so, or I’m on hotel Wifi that is flaky and slow and I don’t want to give up any of its meager bandwidth.

I have another backup-related problem. I have a remote server, which until recently was using extremely slow disks. If I made significant changes, the backup would take the better part of a day. That’s annoying when I try to back up hourly. So of course I had to implement locking, but then that means none of my other machines would back up that day either.

Once I needed to transmit about 2TB of data. My home Internet connection was terribly slow, and I calculated it would take multiple months to do this. So I took to manually copying parts of the data to my laptop, and whenever I’d find an airport or coffee shop with faster Internet than at home, I’d send off those bits from it. But it took a ton of work.

The bespoke asynchronous problem

And that “ton of work” is perhaps why we aren’t doing more of this. There’s been no great standard solution, so it’s all “roll your own” when you need to. So we just use ssh, because it’s easier and usually “good enough”. But as I wrote in my recent article on airgapped backups, there are reasons to go async.

Solutions

Wouldn’t it be great to be able to queue up data for a machine, and let it get there in whatever way it can? Maybe a fast Internet connection is found, or via Tor, or via copying to a USB stick, or via radio broadcast? It would make many of these scenarios a lot easier. And there are ways for this now, with modern security!

We have some tools on Linux for this: git-annex for storage and migration, syrep for synchronization, and NNCP for file transfer and remote execution (could be combined with some of these other tools). Let’s dive in to NNCP.

NNCP

If you already know UUCP, think of NNCP as UUCP brought into the modern era, with modern security and tools.

Basically, NNCP permits you to send files to a remote system, request files from a remote system, and pipe data to an NNCP command that requests execution remotely. So you could, say, pipe a zfs send to NNCP which sends it to the remote and pipes it to zfs receive when it gets there.

NNCP has a delay-tolerant, resumable protocol that can run over just about any reliable connection: TCP, serial, Tor, radios of various kinds, you name it. But that’s not all; it also can dump its queue onto something like a USB stick for transport, or even make a tar-style stream that could be munged however you like. If you want to get fancy, you can assign priorities to data packets, so that, for instance, outbound email will always get sent before that 1TB file you’ve got to send also. You can also configure it so that certain carriers handle certain priorities of data; your cell phone would only handle the most urgent, but a USB stick would take anything.

NNCP is source-routed; you can tell it that the way that Bob reaches Alice is via Carl, then Betty. Bob can generate a message that will be sent along that route, fully encrypted and authenticated at each step of the way; Carl can’t see the content of the message or even anything about it other than its next hop.

How this helps

Let’s revisit some of my scnearios with NNCP.

For the laptop being backed up, while traveling it can queue up its backups, or photos, or videos, or whatever. They could be triggered by a command when on a good connection, or automatically. The data could be copied to USB and given to a friend to transmit; perfectly safe due to encryption. Or it could all wait until arriving at home, safely out of your other syncing directories. The NNCP documentation has an example of this.

For the server being backed up slowly, that’s easily solved; the slow backup would simply be queued up, and transmitted and processed when it’s ready. This wouldn’t interrupt other backups.

How about the 2TB transmission problem? That’s also made a lot easier. A command could be run to fill up a USB stick with parts of the queue, then that USB stick plugged in and transmitted whenever at a fast location. Repeat as needed while the slow system continues its upload of the remaining bits.

NNCP has a lot of interesting use cases documented as well.

If you are already familiar with how public keys work in SSH, then NNCP should be immediately familiar as well. It is a similar concept (though arguably somewhat easier to set up).

I am working on setting up a NNCP network, and will have more posts on how to do so once I’ve got it going. In the meantime, the documentation for the project is also pretty good.

The Incredible Disaster of Python 3

Update 2019-11-22: A successor article to this one dives into some of the underlying complaints.

I have long noted issues with Python 3’s bytes/str separation, which is designed to have a type “bytes” that is a simple list of 8-bit characters, and “str” which is a Unicode string. After apps started using Python 3, I started noticing issues: they couldn’t open filenames that were in ISO-8859-1, gpodder couldn’t download podcasts with 8-bit characters in their title, etc. I have files on my system dating back to well before widespread Unicode support in Linux.

Due to both upstream and Debian deprecation of Python 2, I have been working to port pygopherd to Python 3. I was not looking forward to this task. It turns out that the string/byte types in Python 3 are even more of a disaster than I had at first realized.

Background: POSIX filenames

On POSIX platforms such as Unix, a filename consists of one or more 8-bit bytes, which may be any 8-bit value other than 0x00 or 0x2F (‘/’). So a file named “test\xf7.txt” is perfectly acceptable on a Linux system, and in ISO-8859-1, that filename would contain the division sign ÷. Any language that can’t process valid filenames has serious bugs – and Python is littered with these bugs.

Inconsistencies in Types

Before we get to those bugs, let’s look at this:

>>> "/foo"[0]
'/'
>>> "/foo"[0] == '/'
True
>>> b"/foo"[0]
47
>>> b"/foo"[0] == '/'     # this will fail anyhow because bytes never equals str
False
>>> b"/foo"[0] == b'/'
False
>>> b"/foo"[0] == b'/'[0]
True

Look at those last two items. With the bytes type, you can’t compare a single element of a list to a single character, even though you still can with a str. I have no explanation for this mysterious behavior, though thankfully the extensive tests I wrote in 2003 for pygopherd did cover it.

Bugs in the standard library

A whole class of bugs arise because parts of the standard library will accept str or bytes for filenames, while other parts accept only str. Here are the particularly egregious examples I ran into.

Python 3’s zipfile module is full of absolutely terrible code. As I reported in Python bug 38861, even a simple zipfile.extractall() fails to faithfully reproduce filenames contained in a ZIP file. Not only that, but there is egregious code like this in zipfile.py:

            if flags & 0x800:
                # UTF-8 file names extension
                filename = filename.decode('utf-8')
            else:
                # Historical ZIP filename encoding
                filename = filename.decode('cp437')

I can assure you that zip on Unix was not mystically converting filenames from iso-8859-* to cp437 (which was from DOS, and almost unheard-of on Unix). Or how about this gem:

    def _encodeFilenameFlags(self):
        try:
            return self.filename.encode('ascii'), self.flag_bits
        except UnicodeEncodeError:
            return self.filename.encode('utf-8'), self.flag_bits | 0x800

This combines to a situation where perfectly valid filenames cannot be processed by the zipfile module, valid filenames are mangled on extraction, and unwanted and incorrect character set conversions are performed. zipfile has no mechanism to access ZIP filenames as bytes.

How about the dbm module? It simply has no way to specify a filename as bytes, and absolutely can’t open a file named “text\x7f”. There is simply no way to make that happen. I reported this in Python bug 38864.

Update 2019-11-20: As is pointed out in the comments, there is a way to encode this byte in a Unicode string in Python, so “absolutely can’t open” was incorrect. However, I strongly suspect that little code uses that approach and it remains a problem.

I should note that a simple open(b"foo\x7f.txt", "w") works. The lowest-level calls are smart enough to handle this, but the ecosystem built atop them is uneven at best. It certainly doesn’t help that things like b"foo" + "/" are runtime crashers.

Larger Consequences of These Issues

I am absolutely convinced that these are not the only two modules distributed with Python itself that are incapable of opening or processing valid files on a Unix system. I fully expect that these issues are littered throughout the library. Nobody appears to be testing for them. Nobody appears to care about them.

It is part of a worrying trend I have been seeing lately of people cutting corners and failing to handle valid things that have been part of the system for years. We are, by example and implementation, teaching programmers that these shortcuts are fine, that it’s fine to use something that is required to be utf-8 to refer to filenames on Linux, etc. A generation of programmers will grow up writing code that is incapable of processing files with perfectly valid names. I am thankful that grep, etc. aren’t written in Python, because if they were, they’d crash all the time.

Here are some other examples:

  • When running “git status” on my IBM3151 terminal connected to Linux, I found it would clear the screen each time. Huh. Apparently git assumes that if you’re using it from a terminal, the terminal supports color, and it doesn’t bother using terminfo; it just sends ANSI sequences assuming that everything uses them. The IBM3151 doesn’t by default. (GNU tools like ls get this right) This is but one egregious example of a whole suite of tools that fail to use the ncurses/terminfo libraries that we’ve had for years to properly abstract these things.
  • A whole suite of tools, including ssh, tmux, and so forth, blindly disable handling of XON/XOFF on the terminal, neglecting the fact that this is actually quite important for some serial lines. Thankfully I can at least wrap things in GNU Screen to get proper XON/XOFF handling.
  • The Linux Keyspan USB serial driver doesn’t even implement XON/XOFF handling at all.

Now, you might make an argument “Well, ISO-8859-* is deprecated. We’ve all moved on to Unicode!” And you would be, of course, wrong. Unix had roughly 30 years of history before xterm supported UTF-8. It would be quite a few more years until UTF-8 reached the status of default for many systems; it wasn’t until Debian etch in 2007 that Debian used utf-8 by default. Files with contents or names in other encoding schemes exist and people find value in old files. “Just rename them all!” you might say. In some situations, that might work, but consider — how many symlinks would it break? How many scripts that refer to things by filenames would it break? The answer is most certainly nonzero. There is no harm in having files laying about the system in other encoding schemes — except to buggy software that can’t cope. And this post doesn’t even concern the content of files, which is a whole additional problem, though thankfully the situation there is generally at least somewhat better.

There are also still plenty of systems that can’t handle multibyte characters (and in various embedded or mainframe contexts, can’t even handle 8-bit characters). Not all terminals support ANSI. It requires only correct thinking (“What is a valid POSIX filename? OK, our datatypes better support that then”) to do the right thing.

Update 1, 2019-11-21: Here is an article dating back to 2014 about the Unicode issues in Python 3, which goes into quite a bit of detail about it. It lays out a compelling case for the issues with its attempt to implement a replacement for cat in python 2 and 3. The Practical Python porting for systems programmers is also relevant and, like me, highlights many of these same issues. Finally, this is not the first time I raised issues; I wrote The Python Unicode Mess more than a year ago. Unfortunately, as I am now working to port a larger codebase, the issues I raised before are more acute, and I have discovered more. At this point, I am extremely unlikely to use Python for any new project due to these issues.

Long-Range Radios: A Perfect Match for Unix Protocols From The 70s

It seems I’ve been on a bit of a vintage computing kick lately. After connecting an original DEC vt420 to Linux and resurrecting some old operating systems, I dove into UUCP.

In fact, it so happened that earlier in the week, my used copy of Managing UUCP & Usenet (its author list includes none other than Tim O’Reilly) arrived. I was reading about the challenges of networking in the 70s: half-duplex lines, slow transmission rates, and modems that had separate dialers. And then I stumbled upon long-distance radio. It turns out that a lot of modern long-distance radio has much in common with the challenges of communication in the 1970s – 1990s, and some of our old protocols might be particularly well-suited for it. Let me explain — I’ll start with the old software, and then talk about the really cool stuff going on in hardware (some radios that can send a signal for 10-20km or more with very little power!), and finally discuss how to bring it all together.

UUCP

UUCP, for those of you that may literally have been born after it faded in popularity, is a batch system for exchanging files and doing remote execution. For users, the uucp command copies files to or from a remote system, and uux executes commands on a remote system. In practical terms, the most popular use of this was to use uux to execute rmail on the remote system, which would receive an email message on stdin and inject it into the system’s mail queue. All UUCP commands are queued up and transmitted when a “call” occurs — over a modem, TCP, ssh pipe, whatever.

UUCP had to deal with all sorts of line conditions: very slow lines (300bps), half-duplex lines, noisy and error-prone communication, poor or nonexistent flow control, even 7-bit communication. It supports a number of different transport protocols that can accommodate these varying conditions. It turns out that these mesh fairly perfectly with some properties of modern long-distance radio.

AX.25

The AX.25 stack is a frame-based protocol used by amateur radio folks. Its air speed is 300bps, 1200bps, or (rarely) 9600bps. The Linux kernel has support for the AX.25 protocol and it is quite possible to run TCP/IP atop it. I have personally used AX.25 to telnet to a Linux box 15 miles away over a 1200bps air speed, and have also connected all the way from Kansas to Texas and Indiana using 300bps AX.25 using atmospheric skip. AX.25 has “connected” packets (as TCP) and unconnected/broadcast ones (similar to UDP) and is a error-detected protocol with retransmit. The radios generally used with AX.25 are always half-duplex and some of them have iffy carrier detection (which means collision is frequent). Although the whole AX.25 stack has grown rare in recent years, a subset of it is still in wide use as the basis for APRS.

A lot of this is achieved using equipment that’s not particularly portable: antennas on poles, radios that transmit with anywhere from 1W to 100W of power (even 1W is far more than small portable devices normally use), etc. Also, under the regulations of the amateur radio service, transmitters must be managed by a licensed operator and cannot be encrypted.

Nevertheless, AX.25 is just a protocol and it could, of course, run on other kinds of carriers than traditional amateur radios.

Long-range low-power radios

There is a lot being done with radios these days, much of which I’m not going to discuss. I’m not covering very short-range links such as Bluetooth, ZigBee, etc. Nor am I covering longer-range links that require large and highly-directional antennas (such as some are doing in the 2.4GHz and 5GHz bands). What I’m covering is long-range links that can be used by portable devices.

There is always a compromise in radios, and if we are going to achieve long-range links with poor antennas and low power, the compromise is going to be in bitrate. These technologies may scale down to as low at 300bps or up to around 115200bps. They can, as a side bonus, often be quite cheap.

HC-12 radios

HC-12 is a radio board, commonly used with Arduino, that sports 500bps to 115200bps communication. According to the vendor, in 500bps mode, the range is 1800m or 0.9mi, while at 115200bps, the range is 100m or 328ft. They’re very cheap, at around $5 each.

There are a few downsides to HC-12. One is that the lowest air bitrate is 500bps, but the lowest UART bitrate is 1200bps, and they have no flow control. So, if you are running in long-range mode, “only small packets can be sent: max 60 bytes with the interval of 2 seconds.” This would pose a challenge in many scenarios: though not much for UUCP, which can be perfectly well configured to have a 60-byte packet size and a window size of 1, which would wait for a remote ACK before proceeding.

Also, they operate over 433.4-473.0 MHz which appears to fall outside the license-free bands. It seems that many people using HC-12 are doing so illegally. With care, it would be possible to operate it under amateur radio rules, since this range is mostly within the 70cm allocation, but then it must follow amateur radio restrictions.

LoRa radios

LoRa is a set of standards for long range radios, which are advertised as having a range of 15km (9mi) or more in rural areas, and several km in cities.

LoRa can be done in several ways: the main LoRa protocol, and LoRaWAN. LoRaWAN expects to use an Internet gateway, which will tell each node what frequency to use, how much power to use, etc. LoRa is such that a commercial operator could set up roughly one LoRaWAN gateway per city due to the large coverage area, and some areas have good LoRa coverage due to just such operators. The difference between the two is roughly analogous to the difference between connecting two machines with an Ethernet crossover cable, and a connection over the Internet; LoRaWAN includes more protocol layers atop the basic LoRa. I have yet to learn much about LoRaWAN; I’ll follow up later on that point.

The speed of LoRa ranges from (and different people will say different things here) about 500bps to about 20000bps. LoRa is a packetized protocol, and the maximum packet size depends

LoRa sensors often advertise battery life in the months or years, and can be quite small. The protocol makes an excellent choice for sensors in remote or widely dispersed areas. LoRa transceiver boards for Arduino can be found for under $15 from places like Mouser.

I wound up purchasing two LoStik USB LoRa radios from Amazon. With some experimentation, with even very bad RF conditions (tiny antennas, one of them in the house, the other in a car), I was able to successfully decode LoRa packets from 2 miles away! And these aren’t even the most powerful transmitters available.

Talking UUCP over LoRa

In order to make this all work, I needed to write interface software; the LoRa radios don’t just transmit things straight out. So I wrote lorapipe. I have successfully transmitted files across this UUCP link!

Developing lorapipe was somewhat more challenging than I expected. For one, the LoRa modem raw protocol isn’t well-suited to rapid fire packet transmission; after receiving each packet, the modem exits receive mode and must be told to receive again. Collisions with protocols that ACKd data and had a receive window — which are many — were a problem so bad that it rendered some of the protocols unusable. I wound up adding a “expect more data after this packet” byte to every transmission, and have the receiver not transmit until it believes the sender is finished. This dramatically improved things. There’s more detail on this in my lorapipe documentation.

So far, I have successfully communicated over LoRa using UUCP, kermit, and YMODEM. KISS support will be coming next.

I am also hoping to discover the range I can get from this thing if I use more proper antennas (outdoor) and transmitters capable of transmitting with more power.

All in all, a fun project so far.

Connecting A Physical DEC vt420 to Linux

John and Oliver trip to Vintage Computer Festival Midwest 2019. Oliver playing Zork on the Micro PDP-11

Inspired by a weekend visit to Vintage Computer Festival Midwest at which my son got to play Zork on an amber console hooked up to a MicroPDP-11 running 2BSD, I decided it was time to act on my long-held plan to get a real old serial console hooked up to Linux.

Not being satisfied with just doing it for the kicks, I wanted to make it actually usable. 30-year-old DEC hardware meets Raspberry Pi. I thought this would be pretty easy, but it turns out is was a lot more complicated than I realized, involving everything from nonstandard serial connectors to long-standing kernel bugs!

Selecting a Terminal — And Finding Parts

I wanted something in amber for that old-school feel. Sadly I didn’t have the forethought to save any back in the 90s when they were all being thrown out, because now they’re rare and can be expensive. Search eBay and pretty soon you find a scattering of DEC terminals, the odd Bull or Honeywell, some Sperrys, and assorted oddballs that don’t speak any kind of standard protocol. I figured, might as well get a vt, since we’re still all emulating them now, 40+ years later. Plus, my old boss from my university days always had stories about DEC. I wish he were still around to see this.

I selected the vt420 because I was able to find them, and it has several options for font size, letting more than 24 lines fit on a screen.

Now comes the challenge: most of the vt420s never had a DB25 RS-232 port. The VT420-J, an apparently-rare international model, did, but it is exceptionally rare. The rest use a DEC-specific port called the MMJ. Thankfully, it is electrically compatible with RS-232, and I managed to find the DEC H8571-J adapter as well as a BC16E MMJ cable that I need.

I also found a vt510 (with “paperwhite” instead of amber) in unknown condition. I purchased it, and thankfully it is also working. The vt510 is an interesting device; for that model, they switched to using a PS/2 keyboard connector, and it can accept either a DEC VT keyboard or a PC keyboard. It also supports full key remapping, so Control can be left of A as nature intended. However, there’s something about amber that is just so amazing to use again.

Preparing the Linux System

I thought I would use a Raspberry Pi as a gateway for this. With built-in wifi, that would let me ssh to other machines in my house without needing to plug in a serial cable – I could put the terminal wherever. Alternatively, I can plug in a USB-to-serial adapter to my laptop and just plug the terminal into it when I want. I wound up with a Raspberry Pi 4 kit that included some heatsinks.

I had two USB-to-serial adapters laying around: a Keyspan USA-19HS and a Digi I/O Edgeport/1. I started with the Keyspan on a Raspberry Pi 4 on the grounds that I didn’t have the needed Edgeport/1 firmware file laying about already. The Raspberry Pi does have serial capability integrated, but it doesn’t use RS-232 voltages and there have been reports of it dropping characters sometimes, so I figured the easy path would be a USB adapter. That turned out to be only partially right.

Serial Terminals with systemd

I have never set up a serial getty with systemd — it has, in fact, been quite a long while since I’ve done anything involving serial other than the occasional serial console (which is a bit different purpose).

It would have taken a LONG time to figure this out, but thanks to an article about the topic, it was actually pretty easy in the end. I didn’t set it up as a serial console, but spawning a serial getty did the trick. I wound up modifying the command like this:

ExecStart=-/sbin/agetty -8 -o '-p -- \\u' %I 19200 vt420

The vt420 supports speeds up to 38400 and the vt510 supports up to 115200bps. However, neither can process plain text at faster than 19200 so there is no point to higher speeds. And, as you are about to see, they can’t necessarily even muster 19200 all the time.

Flow Control: Oh My

The unfortunate reality with these old terminals is that the processor in them isn’t actually able to keep up with line speeds. Any speed above 4800bps can exceed processor capabilities when “expensive” escape sequences are sent. That means that proper flow control is a must. Unfortunately, the vt420 doesn’t support any form of hardware flow control. XON/XOFF is all it’ll do. Yeah, that stinks.

So I hooked the thing up to my desktop PC with a null-modem cable, and started to tinker. I should be able to send a Ctrl-S down the line and the output from the pi should immediately stop. It didn’t. Huh. I verified it was indeed seeing the Ctrl-S (open emacs, send Ctrl-S, and it goes into search mode). So something, somehow, was interfering.

After a considerable amount of head scratching, I finally busted out the kernel source. I discovered that the XON/XOFF support is part of the serial driver in Linux, and that — ugh — the keyspan serial driver never actually got around to implementing it. Oops. That’s a wee bit of a bug. I plugged in the Edgeport/1 instead of the Keyspan and magically XON/XOFF started working.

Well, for a bit.

You see, flow control is a property of the terminal that can be altered by programs on a running system. It turns out that a lot of programs have opinions about it, and those opinions generally run along the lines of “nobody could possibly be using XON/XOFF, so I’m going to turn it off.” Emacs is an offender here, but it can be configured. Unfortunately, the most nasty offender here is ssh, which contains this code that is ALWAYS run when using a pty to connect to a remote system (which is for every interactive session):

tio.c_iflag &= ~(ISTRIP | INLCR | IGNCR | ICRNL | IXON | IXANY | IXOFF);

Yes, so when you use ssh, your local terminal no longer does flow control. If you are particularly lucky, the remote end may recognize your XON/XOFF characters and process them. Unfortunately, the added latency and buffering in going through ssh and the network is likely to cause bursts of text to exceed the vt420’s measly 100-ish-byte buffer. You just can’t let the remote end handle flow control with ssh. I managed to solve this via GNU Screen; more on that later.

The vt510 supports hardware flow control! Unfortunately, it doesn’t use CTS/RTS pins, but rather DTR/DSR. This was a reasonably common method in the day, but appears to be totally unsupported in Linux. Bother. I see some mentions that FreeBSD supports DTR/DSR flow (dtrflow and dsrflow in stty outputs). It definitely looks like the Linux kernel has never plumbed out the reaches of RS-232 very well. It should be possible to build a cable to swap DTR/DSR over to CTS/RTS, but since the vt420 doesn’t support any of this anyhow, I haven’t bothered.

Character Sets

Back when the vt420 was made, it was pretty hot stuff that it was one of the first systems to support the new ISO-8859-1 standard. DEC was rather proud of this. It goes without saying that the terminal knows nothing of UTF-8.

Nowadays, of course, we live in a Unicode world. A lot of software crashes on ISO-8859-1 input (I’m looking at you, Python 3). Although I have old files from old systems that have ISO-8859-1 encoding, they are few and far between, and UTF-8 rules the roost now.

I can, of course, just set LANG=en_US and that will do — well, something. man, for instance, renders using ISO-8859-1 characters. But that setting doesn’t imply that any layer of the tty system actually converts output from UTF-8 to ISO-8859-1. For instance, if I have a file with a German character in it and use ls, nothing is going to convert it from UTF-8 to ISO-8859-1.

GNU Screen also, as it happens, mostly solves this.

GNU Screen to the rescue, somewhat

It turns out that GNU Screen has features that can address both of these issues. Here’s how I used it.

First, in my .bashrc, I set this:


if [ `tty` = "/dev/ttyUSB0" ]; then
stty -iutf8
export LANG=en_US
export MANOPT="-E ascii"
fi

Then, in my .screenrc, I put this:


defflow on
defencoding UTF-8

This tells screen that the default flow control mode is on, and that the default encoding for the pty that screen creates is UTF-8. It determines the encoding for the physical terminal for the environment, and correctly figures it to be ISO-8859-1. It then maps between the two! Yes!

My little ssh connecting script then does just this:

exec screen ssh "$@"

Which nicely takes care of the flow control issue and (most of) the encoding issue. I say “most” because now things like man will try to render with fancy em-dashes and the like, which have no representation in iso8859-1, so they come out as question marks. (Setting MANOPT=”-E ascii” fixes this) But no matter, it works to ssh to my workstation and read my email! (mu4e in emacs)

What screen doesn’t help with are things that have no ISO-8859-1 versions; em-dashes are the most frequent problems, and are replaced with unsightly question marks.

termcaps, terminfos, and weird things

So pretty soon you start diving down the terminal rabbit hole, and you realize there’s a lot of weird stuff out there. For instance, one solution to the problem of slow processors in terminals was padding: ncurses would know how long it would take the terminal to execute some commands, and would send it NULLs for that amount of time. That calculation, of course, requires knowledge of line speed, which one wouldn’t have in this era of ssh. Thankfully the vt420 doesn’t fall into that category.

But it does have a ton of modes. The Emacs On Terminal page discusses some of the interesting bits: 7-bit or 8-bit control characters, no ESC key, Alt key not working, etc, etc. I believe some of these are addressed by the vt510 (at least in PC mode). I wonder whether Emacs or vim keybindings would be best here…

Helpful Resources

The Desktop Security Nightmare

Back in 1995 or so, pretty much everyone with a PC did all their work as root. We ran graphics editors, word processors, everything as root. Well, not literally an account named “root”, but the most common DOS, Windows, and Mac operating systems of the day had no effective reduced privilege account.

It was that year that I tried my first Unix. “Wow!” A virus can’t take over my system. My programs are safe!

That turned out to be a little short-sighted.

The fundamental problem we have is that we’d like to give users of a computer more access than we would like to give the computer itself.

Many of us have extremely sensitive data on our systems. Emails to family, medical or bank records, Bitcoin wallets, browsing history, the list goes on. Although we have isolation between our user account and root, we have no isolation between applications that run as our user account. We still, in effect, have to be careful about what attachments we open in email.

Only now it’s worse. You might “npm install hello-world”, and audit hello-world itself, but get some totally malicious code as well. How many times do we see instructions to gem install this, pip install that, go get the other, and even curl | sh? Nowadays our risky click isn’t an email attachment. It’s hosted on Github with a README.md.

Not only that, but my /usr/bin has over 4000 binaries. Have every one been carefully audited? Certainly not, and this is from a distro with some of the highest quality control around. What about the PPAs that people add? The debs or rpms that are installed from the Internet? Are you sure that the postinst scripts — which run as root — aren’t doing anything malicious when you install Oracle Virtualbox?

Wouldn’t it be nice if we could, say, deny access to everything in ~/.ssh or ~/bankstatements except for trusted programs when we want it? On mobile, this happens, to an extent. But we have both a legacy of a different API on desktop, and a much more demanding set of requirements.

It feels like our ecosystem is on the cusp of being able to do this, but none of the options I’ve looked at quite get us there. Let’s take a look at some.

AppArmor

AppArmor falls into the “first line of defense — better than nothing” category. It works by imposing mandatory access controls on a per-executable basis. This starts out as a pretty good idea: we can go after some high-risk targets (Firefox, Chromium, etc) and lock them down. Great! Although it’s not exactly intuitive, with a little configuration, you can prevent them from accessing sensitive areas on disk.

But there’s a problem. Actually, several. To start with, AppArmor does nothing by default. On my system, aa-unconfined --paranoid lists 171 processes that have no policies on them. Among them are Firefox, Apache, ssh, a ton of Pythons, and some stuff I don’t even recognize (/usr/lib/geoclue-2.0/demos/agent? What’s this craziness?)

Worse, since AppArmor matches on executable, all shell scripts would match the /bin/bash profile, all Python programs the Python profile, etc. It’s not so useful for them. While AppArmor does technically have a way to set a default profile, it’s not as useful as you might think.

Then you’re still left with problems like: a PDF viewer should not ordinarily have access to my sensitive files — except when I want to see an old bank statement. This can’t really be expressed in AppArmor.

SELinux

From its documentation, it sounds like SELinux might fit the bill well. It allows transitions into different roles after logging in, which is nice. The problem is complexity. The “notebook” for SELinux is 395 pages. The SELinux homepage has a wiki, which says it’s outdated and replaced by a github link with substantially less information. The Debian wiki page on it is enough to be scary in itself: you need to have various filesystem support, even backups are complicated. Ted T’so had a famous comment about never getting some of his life back, and the Debian wiki also warns that it’s not really tested on desktop systems.

We have certainly learned that complexity is an enemy of good security, leading users to just bypass it. I’m not sure we can rely on it.

Mount Tricks

One thing a person could do would be to keep the sensitive data on a separate, ideally encrypted, filesystem. (Maybe even a fuse one such as gocryptfs.) Then, at least, it could be unavailable for most of the time the system is on.

Of course, the downside here is that it’s still going to be available to everything when it is mounted, and there’s the hassle of mounting, remembering to unmount, password typing, etc. Not exactly transparent.

I wondered if mount namespaces might be an answer here. A filesystem could be mounted but left pretty much unavailable to processes unless a proper mount namespace is joined. Indeed that might be a solution. It is somewhat complicated, though, since nsenter requires root to work. Enter sudo, and dropping privileges back to a particular user — a not particularly ideal situation, and complex as well.

Still, it might well have some promise for some of these things.

Firejail

Firejail is a great idea, but suffers from a lot of the problems that AppArmor does: things must explicitly be selected to run within it.

AppImage and related tools

So now there’s your host distro and your bundled distro, each with libraries that may or may not be secure, both with general access to your home directory. I think this is a recipe for worse security, not better. Add to that the difficulty of making those things work; I know that the Digikam people have been working for months to get sound to work reliably in their AppImage.

Others?

What other ideas are out there? I’ve occasionally created a separate user on the system for running suspicious-ish code, or even a VM or container. That’s a fair bit of work, and provides incomplete protection, but has some benefits. Still, it’s again not going to work for everything.

I hope to play around with many of these tools, especially SELinux, before too long and report back how I’ve found them to be.

Finally, I would like to be really clear that I don’t believe this issue is limited to Debian, or even to Linux. It impacts every desktop platform in wide use today. Actually, I think we’re in a better position to address it than some, but it won’t be easy for anyone.