Monthly Archives: August 2015

First steps: Debian on an Asus t100, and some negative experience with Gnome

The Asus t100 tablet is this amazing and odd little thing: it sells for under $200, yet has a full-featured Atom 64-bit CPU, 2GB RAM, 32 or 64GB SSD, etc. By default, it ships with Windows 8.1. It has a detachable keyboard, so it can be used as a tablet or a very small 10″ laptop.

I have never been a fan of Windows on it. It does the trick for web browsing and email, but I’d like to ssh into my machines sometimes, and I just can’t bring myself to type sensitive passwords into Windows.

I decided to try installing Debian on it. After a lot of abortive starts due to the UEFI-only firmware, I got jessie installed. (The installer was fine; it was Debian Live that wouldn’t boot.) I got wifi and battery status working via an upgrade to the 4.1 kernel. A little $10 Edimax USB adapter was handy to spare a bunch of copying via USB disks.

I have been using XFCE with XMonad for so many years that I am somewhat a stranger to other desktop environments. XMonad isn’t really suitable for a tablet, however, so I thought I’d try Gnome, especially after a fairly glowing review about its use on a tablet.

I am already disappointed after just a few minutes. There is no suspend button on the menu. Some Googling showed that holding Alt while hovering over the power off button will change it to a suspend button. And indeed it does. But… uh, what? That is so common and so non-obvious. And pushing the power button does… nothing. That’s right, nothing. Apparently the way to enable some action when you push the power button is to type in a settings command in a terminal. There’s no setting in the settings panel.

I initially ditched Gnome some years ago due to its penchant for removing features. I had hoped that this much time later, it would have passed that stage, but I’m already disappointed. I was hoping for some really nice integration with the system. But my XFCE setup has a very clear “When power button is pressed” setting. I have no idea why Gnome doesn’t.

Also, the touch screen works fine and it registers my touches, but whenever I touch anywhere, the cursor disappears. Weird, eh?

There are some things to fix yet on the tablet (sound, brightness adjustment, and making suspend reliable) but others have solved these in Ubuntu so I don’t think it’ll be too hard.

In the meantime, any suggestions regarding Gnome? Is it just going to annoy me? Maybe I should try KDE also. I’ve heard good things about Plasma Active, but don’t see it in Debian though.

Detailed Smart Card Cryptographic Token Security Guide

After my first post about smartcards under Linux, I thought I would share some information I’ve been gathering.

This post is already huge, so I am not going to dive into — much — specific commands, but I am linking to many sources with detailed instructions.

I’ve reviewed several types of cards. For this review, I will focus on the OpenPGP card and the Yubikey NEO, since the Cardomatic Smartcard-HSM is not supported by the gpg version in Jessie.

Both cards are produced by people with strong support for the Free Software ecosystem and have strong cross-platform support with source code.

OpenPGP card: Basics with GnuPG

The OpenPGP card is well-known as one of the first smart cards to work well on Linux. It is a single-application card focused on use with GPG. Generally speaking, by the way, you want GPG2 for use with smartcards.

Basically, this card contains three slots: decryption, signing, and authentication slots. The concept is that the private key portions of the keys used for these items are stored only on the card, can never be extracted from the card, and the cryptographic operations are performed on the card. There is more information in my original post. In a fairly rare move for smartcards, this card supports 4096-byte RSA keys; most are restricted to 2048-byte keys.

The FSF Europe hands these out to people and has a lot of good information about them online, including some HOWTOs. The official GnuPG smart card howto is 10 years old, and although it has some good background, I’d suggest using the FSFE instructions instead.

As you’ll see in a bit, most of this information also pertains to the OpenPGP mode of the Yubikey Neo.

OpenPGP card: Other uses

Of course, this is already pretty great to enhance your GPG security, but there’s a lot more that you can do with this card to add two-factor authentication (2FA) to a lot of other areas. Here are some pointers:

OpenPGP card: remote authentication with ssh

You can store the private part of your ssh key on the card. Traditionally, this was only done by using the ssh agent emulation mode of gnupg-agent. This is still possible, of course.

Now, however, the OpenSC project now supports the OpenPGP card as a PKCS#11 and PKCS#15 card, which means it works natively with ssh-agent as well. Try just ssh-add -s /usr/lib/x86_64-linux-gnu/pkcs11/opensc-pkcs11.so if you’ve put a key in the auth slot with GPG. ssh-add -L will list its fingerprint for insertion into authorized_keys. Very simple!

As an aside: Comments that you need scute for PKCS#11 support are now outdated. I do not recommend scute. It is quite buggy.

OpenPGP card: local authentication with PAM

You can authenticate logins to a local machine by using the card with libpam-poldi — here are some instructions.

Between the use with ssh and the use with PAM, we have now covered 2FA for both local and remote use in Unix environments.

OpenPGP card: use on Windows

Let’s move on to Windows environments. The standard suggestion here seems to be the mysmartlogon OpenPGP mini-driver. It works with some sort of Windows CA system, or the local accounts using EIDAuthenticate. I have not yet tried this.

OpenPGP card: Use with X.509 or Windows Active Directory

You can use the card in X.509 mode via these gpgsm instructions, which apparently also work with Windows Active Directory in some fashion.

You can also use it with web browsers to present a certificate from a client for client authentication. For example, here are OpenSC instructions for Firefox.

OpenPGP card: Use with OpenVPN

Via the PKCS#11 mode, this card should be usable to authenticate a client to OpenVPN. See the official OpenVPN HOWTO or these other instructions for more.

OpenPGP card: a note on PKCS#11 and PKCS#15 support

You’ll want to install the opensc-pkcs11 package, and then give the path /usr/lib/x86_64-linux-gnu/pkcs11/opensc-pkcs11.so whenever something needs the PKCS#11 library. There seem to be some locking/contention issues between GPG2 and OpenSC, however. Usually killing pcscd and scdaemon will resolve this.

I would recommend doing manipulation operations (setting PINs, generating or uploading keys, etc.) via GPG2 only. Use the PKCS#11 tools only to access.

OpenPGP card: further reading

Kernel Concepts also has some nice readers; you can get this card in a small USB form-factor by getting the mini-card and the Gemalto reader.

Yubikey Neo Introduction

The Yubikey Neo is a fascinating device. It is a small USB and NFC device, a little smaller than your average USB drive. It is a multi-application device that actually has six distinct modes:

  • OpenPGP JavaCard Applet (pc/sc-compatible)
  • Personal Identity Verification [PIV] (pc/sc-compatible, PKCS#11-compatible in Windows and OpenSC)
  • Yubico HOTP, via your own auth server or Yubico’s
  • OATH, with its two sub-modes:
    • OATH TOTP, with a mobile or desktop helper app (drop-in for Google Authenticator
    • OATH HOTP
  • Challenge-response mode
  • U2F (Universal 2nd Factor) with Chrome

There is a ton to digest with this device.

Yubikey Neo Basics

By default, the Yubikey Neo is locked to only a subset of its features. Using the yubikey-personalization tool (you’ll need the version in stretch; jessie is too old), you can use ykpersonalize -m86 to unlock the full possibilities of the card. Run that command, then unplug and replug the device.

It will present itself as a USB keyboard as well as a PC/SC-compatible card reader. It has a capacitive button, which is used to have it generate keystrokes to input validation information for HOTP or HMAC validation. It has two “slots” that can be configured with HMAC and HOTP; a short button press selects the default slot and a long press selects slot .

But before we get into that, let’s step back at some basics.

opensc-tool –list-algorithms claims this card supports RSA with 1024, 2048, and 3072 sizes, and EC with 256 and 384-bit sizes. I haven’t personally verified anything other than RSA-2048 though.

Yubikey Neo: OpenPGP support

In this mode, the card is mostly compatible with the physical OpenPGP card. I say “mostly” because there are a few protocol differences I’ll get into later. It is also limited to 2048-byte keys.

Support for this is built into GnuPG and the GnuPG features described above all work fine.

In this mode, it uses firmware from the Yubico fork of the JavaCard OpenPGP Card applet. There are Yubico-specific tutorials available, but again, most of the general GPG stuff applies.

You can use gnupg-agent to use the card with SSH as before. However, due to some incompatibilities, the OpenPGP applet on this card cannot be used as a PKCS#11 card with either scute or OpenSC. That is not exactly a huge problem, however, as the card has another applet (PIV) that is compatible with OpenSC and so this still provides an avenue for SSH, OpenVPN, Mozilla, etc.

It should be noted that the OpenPGP applet on this card can also be used with NFC on Android with the OpenKeychain app. Together with pass (or its Windows, Mac, or phone ports), this makes a nicely secure system for storing passwords.

Yubikey Neo: PKCS#11 with the PIV applet

There is also support for the PIV standard on the Yubikey Neo. This is supported by default on Linux (via OpenSC) and Windows and provides a PKCS#11-compabible store. It should, therefore, be compatible with ssh-agent, OpenVPN, Active Directory, and all the other OpenPGP card features described above. The only difference is that it uses storage separate from the OpenPGP applet.

You will need one of the Yubico PIV tools to configure the key for it; in Debian, the yubico-piv-tool from stretch does this.

Here are some instructions on using the Yubikey Neo in PIV mode:

A final note: for security, it’s important to change the management key and PINs before deploying the PIV mode.

I couldn’t get this to work with Firefox, but it worked pretty much everywhere else.

Yubikey Neo: HOTP authentication

This is the default mode for your Yubikey; all other modes require enabling with ykpersonalize. In this mode, a 128-bit AES key stored on the Yubikey is used to generate one-time passwords (OTP). (This key was shared in advance with the authentication server.) A typical pattern would be for three prompts: username, password, and Yubikey HOTP. The user clicks in the Yubikey HOTP field, touches the Yubikey, and their one-time token is pasted in.

In the background, the service being authenticated to contacts an authentication server. This authentication server can be either your own (there are several open source implementations in Debian) or the free Yubicloud.

Either way, the server decrypts the encrypted part of the OTP, performs validity checks (making sure that the counter is larger than any counter it’s seen before, etc) and returns success or failure back to the service demanding authentication.

The first few characters of the posted auth contain the unencrypted key ID, and thus it can also be used to provide username if desired.

Yubico has provided quite a few integrations and libraries for this mode. A few highlights:

You can also find some details on the OTP mode. Here’s another writeup.

This mode is simple to implement, but it has a few downsides. One is that it is specific to the Yubico line of products, and thus has a vendor lock-in factor. Another is the dependence on the authentication server; this creates a potential single point of failure and can be undesireable in some circumtances.

Yubikey Neo: OATH and HOTP and TOTP

First, a quick note: OATH and OAuth are not the same. OATH is an authentication protocol, and OAuth is an authorization protocol. Now then…

Like Yubikey HOTP, OATH (both HOTP and TOTP) modes rely on a pre-shared key. (See details in the Yubico article.) Let’s talk about TOTP first. With TOTP, there is a pre-shared secret with each service. Each time you authenticate to that service, your TOTP generator combines the timestamp with the shared secret using a HMAC algorithm and produces a OTP that changes every 30 seconds. Google Authenticator is a common example of this protocol, and this is a drop-in replacement for it. Gandi has a nice description of it that includes links to software-only solutions on various platforms as well.

With the Yubikey, the shared secrets are stored on the card and processed within it. You cannot extract the shared secret from the Yubikey. Of course, if someone obtains physical access to your Yubikey they could use the shared secret stored on it, but there is no way they can steal the shared secret via software, even by compromising your PC or phone.

Since the Yubikey does not have a built-in clock, TOTP operations cannot be completed solely on the card. You can use a PC-based app or the Android application (Play store link) with NFC to store secrets on the device and generate your TOTP codes. Command-line users can also use the yubikey-totp tool in the python-yubico package.

OATH can also use HOTP. With HOTP, an authentication counter is used instead of a clock. This means that HOTP passwords can be generated entirely within the Yubikey. You can use ykpersonalize to configure either slot 1 or 2 for this mode, but one downside is that it can really only be used with one service per slot.

OATH support is all over the place; for instance, there’s libpam-oath from the OATH toolkit for Linux platforms. (Some more instructions on this exist.)

Note: There is another tool from Yubico (not in Debian) that can apparently store multiple TOTP and HOTP codes in the Yubikey, although ykpersonalize and other documentation cannot. It is therefore unclear to me if multiple HOTP codes are supported, and how..

Yubikey Neo: Challenge-Response Mode

This can be useful for doing offline authentication, and is similar to OATH-HOTP in a sense. There is a shared secret to start with, and the service trying to authenticate sends a challenge to the token, which must supply an appropriate response. This makes it only suitable for local authentication, but means it can be done fairly automatically and optionally does not even require a button press.

To muddy the waters a bit, it supports both “Yubikey OTP” and HMAC-SHA1 challenge-response modes. I do not really know the difference. However, it is worth noting that libpam-yubico works with HMAC-SHA1 mode. This makes it suitable, for instance, for logon passwords.

Yubikey Neo: U2F

U2F is a new protocol for web-based apps. Yubico has some information, but since it is only supported in Chrome, it is not of interest to me right now.

Yubikey Neo: Further resources

Yubico has a lot of documentation, and in particular a technical manual that is actually fairly detailed.

Closing comments

Do not think a hardware security token is a panacea. It is best used as part of a multi-factor authentication system; you don’t want a lost token itself to lead to a breach, just as you don’t want a compromised password due to a keylogger to lead to a breach.

These things won’t prevent someone that has compromised your PC from abusing your existing ssh session (or even from establishing new ssh sessions from your PC, once you’ve unlocked the token with the passphrase). What it will do is prevent them from stealing your ssh private key and using it on a different PC. It won’t prevent someone from obtaining a copy of things you decrypt on a PC using the Yubikey, but it will prevent them from decrypting other things that used that private key. Hopefully that makes sense.

One also has to consider the security of the hardware. On that point, I am pretty well satisfied with the Yubikey; large parts of it are open source, and they have put a lot of effort into hardening the hardware. It seems pretty much impervious to non-government actors, which is about the best guarantee a person can get about anything these days.

I hope this guide has been helpful.

The Time Machine of Durango

“The airplane may be the closest thing we have to a time machine.”

– Brian J. Terwilliger

IMG_5731_v1

There is something about that moment. Hiking in the mountains near Durango, Colorado, with Laura and the boys, we found a beautiful spot with a view of the valley. We paused to admire, and then –

The sound of a steam locomotive whistle from down below, sounding loud all the way up there, then echoing back and forth through the valley. Then the quieter, seemingly more distant sound of the steam engine heading across the valley, chugging and clacking as it goes. More whistles, the sight of smoke and then of the train full of people, looking like a beautiful model train from our vantage point.

IMG_5515

I’ve heard that sound on a few rare recordings, but never experienced it. I’ve been on steam trains a few times, but never spent time in a town where they still run all day, every day. It is a different sort of feeling to spend a week in a place where Jacob and Oliver would jump up several times a day and rush to the nearest window in an attempt to catch sight of the train.

IMG_5719_v1

Airplanes really can be a time machine in a sense — what a wondrous time to be alive, when things so ancient are within the reach of so many. I have been transported to Lübeck and felt the uneven 700-year-old stones of the Marienkirche underneath my feet, feeling a connection to the people that walked those floors for centuries. I felt the same in Prague, in St. George’s Basilica, built in 1142, and at the Acropolis of Lindos, with its ancient Greek temple ruins. In Kansas, I feel that when in the middle of the Flint Hills — rolling green hills underneath the pure blue sky with billowing white clouds, the sounds of crickets, frogs, and cicadas in my ears; the sights and sounds are pretty much as they’ve been for tens of thousands of years. And, of course, in Durango, arriving on a plane but seeing the steam train a few minutes later.

IMG_5571_v1

It was fitting that we were in Durango with Laura’s parents to celebrate their 50th anniversary. As we looked forward to riding the train, we heard their stories of visits to Durango years ago, of their memories of days when steam trains were common. We enjoyed thinking about what our lives would be like should we live long enough to celebrate 50 years of marriage. Perhaps we would still be in good enough health to be able to ride a steam train in Durango, telling about that time when we rode the train, which by then will have been pretty much the same for 183 years. Or perhaps we would take them to our creek, enjoying a meal at the campfire like I’ve done since I was a child.

Each time has its unique character. I am grateful for the cameras and airplanes and air conditioning we have today. But I am also thankful for those things that connect us with each other trough time, those rocks that are the same every year, those places that remind us how close we really are to those that came before.